How HIV infiltrates our immune system
and lessons on how to strike back

Teunis Geijtenbeek

Department of Experimental Immunity
Academic Medical Center
University of Amsterdam
The Netherlands
Disclosure of speaker’s interests

No conflict of interest
Sexual transmission of HIV-1

- Sexual intercourse is main route of infection
 Involvement of mucosal tissues and immune cells

- Low number of CD4+ T cells in mucosal tissues

- Dendritic cells as antigen presenting cells are main immune cells in mucosal tissues

Infiltration by HIV-1: Which immune cells are involved?

Fight back: How can we induce efficient immunity to HIV-1?
Dendritic cells mediate HIV-1 transmission

- Antigen presentation
- T cell activation
Dendritic cells efficiently bind HIV-1

Immature dendritic cells

C-type lectin receptor:
- binds carbohydrates (mannose)
- binds viruses (HIV-1, Measles virus, HCV, Ebola virus)
- virus transmission
- induces signaling pathways
- suppresses RNA sensors RIG-I/Mda-5

Geijtenbeek et al. Cell 2000a/b
HIV-1 transmission by dendritic cells

‘infectious synapse’
Dendritic cells mediate HIV-1 transmission

Carla Ribeiro, restriction mechanism
Nienke van Teijlingen, HIV-1 ticking bomb
Maartje Nijmeijer, HCV transmission

Gringhuis et al. Nat Immunol 2010
De Witte et al. Nat Med 2007
HIV-1 sensing by dendritic cells?

DCs sense invading pathogens

- Type I IFN responses
- DC maturation
- Cytokine responses

Induction of adaptive immunity
- CD4 T cell responses
- CD8 T cell responses
Type I IFN induces antiviral immunity response

Antiviral IFN stimulated genes
- Restriction factors (TRIM5α, MxA, APOBEC3G, ISG15)
→ Limit viral replication
→ Causes immune activation (adaptive immunity)
→ Early type I IFN controls SIV infection in Rhesus Macaques
→ Continuous exposure accelerates SIV disease progression (Sandler Nature 2014)
Cytosolic receptors induce type I IFN responses to viruses

HIV-1 sensing by dendritic cells?
Is HIV-1 infection sensed in dendritic cells?

Adapted from Yan & Chen NI 2012

HIV-1 replication cycle
HIV-1 infection does not induce type I Interferon

- Infect monocyte-derived DCs with HIV-1

- robust HIV-1 replication
- no type I IFN response
- no DC activation
- no cytokines

Hertoghs et al J Immunol 2015
Dendritic cells are ‘unresponsive’ to HIV-1

HIV-1 infection of DCs (no sensing or inhibition?)

No type I IFN responses
No DC maturation
No cytokines

No efficient immune response to HIV-1 (detrimental to HIV-1 infected patients)

How does HIV-1 escape immune surveillance?
Sensing of viruses by cytosolic receptors

- HIV-1 binding to DC-SIGN activates Raf-1

- Measles virus binding to DC-SIGN inhibits RIG-I/Mda5

Does HIV-1 target DC-SIGN to block RNA/DNA sensors?

Mesman et al., Cell Host & Microbes 2014
HIV-1 blocks type I IFN responses via Raf-1

Monocyte-derived DC infected with HIV-1

HIV-1 blocks type I IFN responses in primary DC subsets via Raf-1

\[\rightarrow \text{Independent of HIV-1 strain (X4, R5 and primary isolates)} \]
HIV-1 blocks type I IFN responses via Raf-1

Type I IFN induces expression of antiviral IFN-stimulated genes (ISGs)

HIV-1 infects dendritic cells by suppressing type I IFN responses.

Blocking DC-SIGN signaling enhances type I IFN responses and restricts HIV-1 infection.

Which cytosolic sensor detects HIV-1?
HIV-1 sensor signals via MAVS

Infect DCs with HIV-1

IFNβ

mRNA expression (relative)

Control siRNA

MAVS siRNA

HIV-1 + GW5074

mRNA expression (relative)

Control siRNA
cGAS siRNA

STING siRNA

Cytosol

Nucleus

DNA sensor

cGAS

RNA sensor

MAVS

STING

IRF3

IFNβ

**
HIV-1 sensor is RNA helicase DDX3

- Screening of siRNA library of RNA sensors and related family members (Dead-Box Helicase family)

◊ DDX3 silencing blocks type I IFN responses after HIV-1 infection

Abortive RNA from HIV-1 triggers DDX3

Physiological relevance of the suppression of DDX3 sensing?

DDX3 function: Melissa Stunnenberg
In vivo relevance of the DC-SIGN / DDX3-MAVS pathway

- identified two linked MAVS polymorphisms
- polymorphisms render MAVS insensitive to DC-SIGN inhibition

Type I IFN responses and HIV-1 infection in homozygous MAVS donors?
The dual MAVS mutant is insensitive to HIV-1 suppression.

MAVS polymorphisms similar phenotype as DC-SIGN inhibition with drugs.
Type I IFN response required for DC activation

Immature DC → Activated DC

Co-stimulatory molecules (CD86)

→ DCs with MAVS polymorphisms secrete cytokines upon HIV-1 infection

How does this mechanism affect HIV-1 pathogenesis in HIV-1 infected patients?
Lower HIV-1 replication in MAVS homozygous individuals

Amsterdam cohort studies for HIV-1/AIDS (untreated HIV-1 infected men)

→ low viral load at setpoint (stabilized viral load) indicates better adaptive immunity

→ HIV-1 replication is attenuated in infected men homozygous for MAVS
DDX3 is a novel RNA sensor for HIV-1 in human dendritic cells

Novel RNA sensing system via DDX3-MAVS pathway

A natural SNP in MAVS confers protective immunity in vitro/in vivo

DC-SIGN pathway as target to enhance immunity to HIV-1
Conclusions

Currently investigating the mode of control in chronic phase in patients (CD8 T cell activation, restriction factors)

Inducing HIV-1 sensing during sexual transmission inhibits virus replication in chronic phase!
Department of Experimental Immunology
Academic Medical Center, Amsterdam

Host Defense group
- Nina Hertoghs
- Tanja Kaptein
- Ramin Sarrami
- Melissa Stunnenberg
- Leane Helgers
- Julia Eder
- Esther Zijlstra-Willems
- John van Hamme
- Joris Sprokholt
- Nienieke van Teijlingen
- Maartje Nijmeijer
- Tracy Eisden
- Carla Ribeiro
- Sonja Gringhuis

LVIP
- Neeltje Kootstra
- Thijs Booman
- Karel van Dort
- Laurentia Setiawan
- Cell Biology
- Wikky Tighelaar
- Nicole van der Wel

Advanced Grant
Abortive RNA from HIV-1 triggers DDX3

Physiological relevance of the suppression of DDX3 sensing?

DDX3 function: Melissa Stunnenberg