Combinatorial CRISPR/Cas9 approaches targeting different steps in the HIV life cycle can prevent the selection of resistance

Femke Wolters,
University Medical Center Utrecht,
the Netherlands

Current cART strategies

- Current cART is designed to efficiently control HIV replication
- The current arsenal of antiretroviral compounds can neither
- suppress viral production nor target the viral reservoir
- Alternative strategies, such as gene editing, are required to permanently disrupt the HIV genome in the cellular reservoir
- Gene editing tool: RNA-guided CRISPR/Cas9 nuclease

gRNA-guided CRISPR/Cas9 nuclease

The effect of <u>single</u> gRNAs on viral replication and escape

- Generated T-cells stably expressing single gRNAs and Cas9
- Infect with HIV and measure protection against infection (day 4)

Generated T-cells stably expressing single gRNAs and Cas9

 Two recent studies suggest that NHEJ repair machinery may facilitate HIV escape^{1,2}

The effect of <u>single</u> gRNAs on viral replication and escape

Nucleotide substitution patterns in HIV escape variants

HIV target gene	PR	RT	IN	MA	Totaal	
Samples (n)	14	21	14	18	67	
target sequence	ATTAGT	AAGGAA	GTGCTA	GATCGA		Accelerating viral escape
A>T	4	5	0	1	10	7
A>C	2	13	0	0	15	The cellular error-prone non-homologous end joining (NHEJ) machinery
A>G	10	10	7	10	37	
T>A	0	0*	5	5	10	
T>C	13	0*	5	13	31	
T>G	1	0*	5	18	24	J
C>A	0*	0*	1	1	2	
C>T	0*	0*	1	1	2	1
C>G	0*	0*	11	0	11	
G>A	2	1	1	1	5	
G>T	1	2	3	1	7	
G>C	1	15	1	1	18	_
	34	46	40	52	172	

^{*} Nucleotide is not present in target site

- Generated T-cells stably expressing two gRNAs and Cas9
- Long-term infection with HIV reporter virus (luciferase) (n=4)

Concluding remarks

- gRNAs differ in potency to inhibit HIV replication
- Rapid viral escape is observed to all single gRNAs
- Error-prone NHEJ repair mechanism is accelerating viral escape
- A combination of two potent gRNAs can successfully prevent viral replication and escape

Gene-editing may provide a future alternative for control of HIV-infection.

Acknowledgment

Disclosure of speaker's interests UMC Utrecht

No conflict of interest

